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1. Introduction

Incoherent scatter radar (ISR) has become the most powerful means of studying the iono-
sphere from the ground. Many of the ideas and methods underlying the troposphere and
stratosphere (ST) radars have been taken over from ISR. Whereas the theory of refractive
index fluctuations in the lower atmosphere, depending as it does on turbulence, is poorly
understood, the theory of the refractivity fluctuations in the ionosphere, which depend on
thermal fluctuations, is known in great detail. The underlying theory is one of the most
successful theories in plasma physics, and allows for many detailed investigations of a num-
ber of parameters such as electron density n,, electron temperature T, ion temperature
T;, electron mean velocity v., ion mean velocity V; as well as parameters pertaining to
composition, neutral density and others.

Here we shall review the fundamental processes involved in the scattering from'a plasma
undergoing thermal or near thermal fluctuations in density. We shall relate the fundamental
scattering properties of the plasma to the physical parameters characterizing it from first
principles. We shall not discuss the observation process itself, as the observational principles
are quite similar whether they are applied to a neutral gas or a fluctuating plasma. These
observational principles are dealt with in other ISAR presentations.
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Figure 1. Volume element d(r) in volume V illuminated by plane wave.

2. Volume Scattering from d larities, Continuu

In the neutral atmosphere the scattering is derived from the following consideration:

With an incoming wave: E,e~"%in [note that exp (iw,t) is understood] and a dielectac
constant in medium:
£ =&, + Ag(n),
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the polarization of the medium becomes:
B(A) = Ae(F) - E, - e~*hin T 2
This oscillating polarization acts as an equivalent current:

5‘(7:.) = iwoﬁ(ﬂ = 1w, ACE, . e—'h""’y (3)

and the vector potential at a point far from volume V is:

o o~ Boo iw,E, P\ kin T o= ik|F=R| g o
A= b e / Ae(7)e e (7) (4)

Observer
z
[
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X \ y

Figure 2. Scattering geometry to calculate vector potential at the observer.

with [ — 77| & |r| = iy - 7, where i) & &5
We obtain:
/f(r‘) = Z_" . ’ﬁ°_" ce—ikr / Ae(F') - eV (k-n—k-u)d( ) (5)
T

A‘(knu —k'lt)

which means that the received field depends on the spatial Fourier component with wave
vector k = kin — kpec.
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Figure 3. Relation between the wave vectors of the transmitted and revised
waves and the spatial Fourier component of the dielectric fluctuation.

It is easy to show from this that for a plane incoming wave of flux (Poynting vector mag-
nitude) S;,, the flux at the receiver is:

wold . 2 Y B2
Sree = (4‘”)2}22 s x lAE(kin - krec)' Sin (6)
1

po = 47 - 1077 Henry/m
siny = polarization factor, see next section.

R, = distance between scattering volume and observer

In a plasma

An(F) - e?

Ae(F) = -= =

Where:

An(7) = electron density fluctuation
e = 1.602- 10~"° Coulomb = elementary charge

m = 9.110 - 1073 kg = electronic mass

and one obtains by substitution:

2
Srec =(%:) IAn(Eiu - Ercc)lz . Jiﬂzx * Sin (S)

where r, is the classical radius of the electron defined by
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e?

Tp = ——————
° T 4rme? -5,

€, =8.854- 1072 F/m

c=2.998-108m/s

cattering fro jvid ectrons, Discrete Particles

Let us recapitulate the derivation of the scattering by a free electron of electromagnetic
waves impinging on it. It was originally thought that the scattering from a plasma could be
considered a super-position of scattering from individual free electrons and that the strength
and spectral broadening can be used to determine density and electron temperature. For
the ionospheric plasma and for the frequency used in such scatter experiments, it turned
out that the scattering could not usually be considered that simply and that the actual
situation was more favorable from an experimental point of view. Nevertheless, even with
the more complex theory of interacting electrons the scattering from an individual free
electron forms an important and essential ingredient.

Assume as in Section 2 that the electric field set up at the position occupied by the electron
is:

E(t) = E, - et (9)

where E, is a complex electric field amplitude which allows for an arbitrary polarization.
When we assume that w, >> §,, where {1, is the angular gyrofrequency of an electron.
the equation of motion of the electron becomes:

-E"o etwel = m. 7, (10)

Solving for #(t) with the substitution #(¢) = 7, e**“** one obtains:

E, (1)

Up = +i
o

Note that we have neglected the spatial variation of the external electric field and the fact
that the electron moves in this field. We have also ignored the force caused by the motion
of the electron in the magnetic field of the incoming wave. Both of these effects could
contribute to a ponderomotive force which we ignore. We also note that the motion of
the electron is considered undamped. This cannot be strictly true since the electron, even
without collisions, is re-radiating because of the oscillation and hence, must experience
damping.

The current density associated with the motion of this electron becomes:
F(7t) = —ed (8) 8[7 - 7o (1) (12)
where 7,(t) is the position of the electron and where §(r) is a spatial deltafunction. With

such an oscillating current at the origin we obtain as in the previous section:

A7) = —i Lo Beriteuin L (13)
! 41!'771&), ° R]
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The position of the observer 7 may vary with time due to motion of the electron and we
must substitute when necessary:
- =7 g lF'!
r=fF(ty=r{t-—
0 =r(e- 1)

where 7'(t) is the radius vector describing the position of the electron relative to the position
of the observer at time t.

The Poynting flux vector at the receiver due to the radiation from this electron becomes:

1z, 1 €2 \? |krec X E,|?
Sree = g0 HIF =27 (41rmw,> R (14)
where 7 = \/i1,/€, = 376.7 ohms. Introducing the polarization angle x through
siny = [ree X Eol (15)
[krec - [Eol
and the power density incident on the electron, S;, by:
1
Sin=1Eo*/n- 3 (16)
we obtain:
Srec = (ro/R;)2 - sin’y - Sin = 10~2 sin?x - Sia (17
The usual radar cross section g, is defined by:
o, = 47RY. Sree _ 4rr? siny ~ 10728 sin?x(m?) (18)

mn

In calculating the single electron scattering we have implicitly assumed that the driving
electric field is linearly polarized and that the angle between the field and the direction of
the receiver is x. In actual fact the electron is often oscillating in two linearly polarized
fields of arbitrary relative phase and amplitude. When this is the case the interpretation of
sin?y is more complex and the amount of scattered energy available may only be received
provided the receiver is properly “matched” to the scattered wave.

Consider a plane wave propagating along a positive z-axis. The complex amplitude E, may

then be represented as;

Eo = {o(cosB - €; + e sing- €y) =60 { cosf } =&p (19)

sinfd - et

A linear polarization along the z-axis corresponds to:

and along the y-axis:
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Circular polarization is represented by:

1 1
p= —= % right circular
P= {-z} &
! { 1.} left circular
+1

P=

It follows that the scattered field at the receiver can be expressed as follows:
EA(7t) = S x (7 x EjemitontFree (20)
1

where 7 is a unit vector along the direction of the scattered wave. In order to specify
the polarization both of the transmitted and scattered wave we introduce the following two
coordinate systems:

A. For the transmitted wave:
& =1, = kin/lkinl
€y = unit vector normal to plane defined by Ein; Erec

& = normal to both &, and € in a right handed coordinate system.

B. For the scattered wave:

- i
Ez ﬁl = krec/”crec'

—- __ =
ey—c,

&), = normal to €', and &', in right handed coordinate system.

Figure 4. Relationship between polarization of incom-
ing and scattered waves.
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In terms of these two coordinate systems we may write:

E. - —Lo-fo cosé 0 cosﬂ. gilwat=Erec P
E,, R, 0 1 sinf - e'

or:

cosf' _ T cosf 0 cosf
$ro {sinﬂ'e"' } "R, {0 1 } {sinﬂe" } S (21a)

This determines the relationship of the two fields. In particular we note that

siny = sin?f + cos?f - cos*d (22)
where 8 is the angle between 7, and ;.

1t is now clear that one may express the relationship between scattered and incident electric
field amplitudes as:

=) To —-

= —-—£¥ 21b)
érop leo p (
where:

¥ = {:)059 0} (geometry)

sinfeit

7 ={ ,COSB'_ }(receiver)

sinf'e'®

ﬁ={ Cosﬂ, }(transmitter)

cattering from a Collection of Electrons

When many scattering electrons are present inside a volume V rather than a single one the
observed field is given by the sum

N
A _ To - IE'- (t) ’
Er - R Eo \pppé:le 4 (23)

where N is the total number of electrons within the volume V, where the polarization and
geometry of all the electrons are the same so that we do not have to sum over different ¥p"'s
The previous distance between a scattering electron and the observer, R,, now represents
the distance from an origin within the scattering volume and r,,( ) represents the position
of electron number p within this volume. The vector k= k,,c - k.,, comes about as follows:
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Figure 5. Scattering from electron at 7.

In the scattering volume, apart from a phase factor, the incoming wave has the form:

Einl(F 1) = & e/ent=m R
so that the field at electron number p is:

Ein(Fp,t) = £, - ¥(et=Fin ) (24)
From the previous section the field at the receiver due to electron p becomes
E-'.r = _l Eo qlﬁci(w,l—k-gnf,) . e—ikﬂl, (25)

R
If the distance from the receiver to the origin in the scattering volume is R; we have:
Rlp ] Rl - Ercc Fp

Substituting this into (25), ignoring an irrelevant phase factor (¢'*®') and summing over
all electrons gives eqn. (23) provided

e

k= Erec - Elﬂ! (26)

We next imagine the particle density to be expanded in a spatial Fourier series through:

n(7 1) = 5 3 on(F 1)~ F " (27)
£

where

n(F,t) = L d(FAn(F, e+ ET (28)

Since the scattering electrons must be considered point particles at 7p(t), p = 1,..N the
density is:
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N
n(7t) = 3 67— 7p()]

p=1
with a spatial spectrum

N N
n(kt) = Y et EHO = 5 ony(E, ) )
p=1

p=1

A comparison with (23) shows that the observed scattered field from the electrons may be
expressed as:

E = _;_"15, U - efwelt=Ri/o) . n(k 1) (30)

The complex amplitude of the received signal is

At =gt ¥ pl - n(k,t) 31)
= A, - n(k,t)
<AY(DA(t+7)> = A2 <n*(E,t)n(k,t +7) > (32)

= A2n, -V <n}(kting(E,t +7)>

where < ... > denotes ensemble average, where individual particles are assumed to be
independent, where n, is the mean electron density and where:

< 3 (F,)np(R,t +7) >=< D70 52 5 (F 1) (33)
is the autocorrelation of density fluctuations associated with a single electron.

Similarly, the power spectrum received is determined from the Wiener-Khinchine’s theorem,
and

Prec(w) =1+ V- Poe®,(k,w) (34)

where P, is the power scattered by an individual electron under the same geometrical and
external conditions and where:

- +00 - - .
b,k ,w) = / < ny(k,t)ng(k,t +7) > e™“Tdr =
oo ‘
- / < e F BN =B ] 5 miwr gy (35)

—00

] - .
= / pp(k,T)e™"“Tdr

We often need the integral:
G(F,w) = / oo, 7)e i dr (36)
o

With this function the spectrum of a particle becomes

Ixd
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&,(k,w) = 2+ Re[G(k,w)]. (37)

It will become apparent in the next two sections that both the plasma response to an electric
field as well as the thermal driving force can be described on the basis of the motion of
non- interacting particles. It is, therefore, useful to study their motion in some detail.

We assume that the static magnetic field B, is directed along the z-axis. It will be conve-
nient to introduce “polarized” coordinates to describe the position of a particle:

Cartesian: Polarized:
7= {z,y,2} F={ry,ro1,7} (38)

The relationship between the two descriptions is

r1=%(:r+iy) :c=-\71l2-(r1+r_2)
ro1 = (z - iy) y=5(r-1-ra)
r.,=z7; z=rzz. (39)

The advantage of these polarized coordinates becomes evident when we state the equation
of free motion of a particle:

d;" = —1alvg (a=%1,0)
i (40)
Q=22
m

where ¢ and m are the charge and the mass of the particle (electron or ion) respectively.
From this we determine the relationship between the (past) velocity at time ¢’ =t — 7 in
terms of the present velocity (at t)

5t - 1) =T(r)5(t) (41)
where I'(r) is a diagonal matrix with elements.
[f(T)]aa =" = gu(7) (42)
The past particle position can be determined similarly in terms of present position and
present velocity through
it —7) ={t) - T(r) &(¢) (43)

where I'(7) is a diagonal matrix which determines the particle helical motion. The elements
are given by

eiaﬂr -1
T(7)]aa = a0 - 9a(7) (a = £1,0) (44)

The single particle autocorrelation, eqn. (33) now ‘becomes:
pp(F,7) =< F7 > (45)
where

da = ko g-a 7 (46)
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The actual form of p,(k, 7) depends on the statistical distribution of velocities, the magnetic
field strength and the angle ¥ between k and the magnetic field direction.

For a Maxwellian velocity distribution:

£o(3) = (2m) P03 &= /2 (47)
where
U?h = T/m
T = kinetic temperature (in energy units)
we obtain:

PP(E: T) = C‘%"’c’u 1)

2
o ()t (Fun

The gyration radius R is defined as:

=€

\/fvth

R=Q

(49)

It equals the ratio of the r.m.s. orbital velocity and the angular gyration frequency.

We note that for weak magnetic fields and arbitrary 7, or for k| B, Ge. y=0)and
arbitary magnetic field strength the autocorrelation becomes

pp(F,7) — e H(ke "’ (50)
When F is exactly perpendicular to the magnetic field, the autocorrelation for the plasma-

density becomes periodic with period T = 27/Q. The depth of modulation increases with
R and decreases with the scale of the density fluctuation A = 2r/k, see Figure 6.

increasing R

increasingA

Figure 6. Autocorrelation of density fluctuation when kL B,.
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For intermediate angles between k and B, the autocorrelation of the density fluctuation
can be regarded a product of two factors, see (48).

2
A —(kR)? (%Z) cos?y
e

B) —(kR)*sin? (921) - sinly
e

which are sketched in Figure 7.

1 increasing y
Factor A
.
i
i
i Factor B
!
- - o
T T

Figure 7. The two factors which in the autocorrelation of in the
density fluctuation of non-interacting particles.

The spectral function ¢(k,w) becomes (see 37):

¢p(F,w) = 2Re {G,(E, w)} (51)

where

G,(kw)= [ e ivildli-ivrg, (52)
4

o

The next section introduces particle interaction through a self-consistent electric field.

nse to a Fi ticle. ic Interactio

We now introduce particle correlations in the plasma components (electrons, various types
of ions) by considering the particles smeared out into a continuum and by assessing the
response of this continuum to each discrete particle separately.

The plasma response to an electric field E(F’, t)can be obtained by solving the Vlasov equa-
tion to first order in én(F, 7, ) and E(7,t). The perturbation solution for any of the species
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is given by (see Appendix A)

§n(F,o,t) 29 / E(7, t)g'.ff; dt’ (53)

Here E(r"’, t) is a small electric field which we shall later assume set up by the fluctuating
charges, often referred to as the self-consistent field. The integration is carried out along
the unperturbed particle orbits which were studied previously. This is indicated by the
primed quantities in the integrand.

We make the following substitutions:

t'=t-r
E(.b) = %;ﬁ(fc‘,t = r)e BT -
Integrating over all possible 7 we obtain the induced density fluctuation:
n(k 1) = 222 / dr B(E,t - 1) / d(@)i(r) L) eiErens (55)

We now take the Fourier transform with respect to time, and relate the electric field to the
total electric charge fluctuation Q(k,w) by:

Efw) = 257 QFw) (56)

We, therefore, only include longitudinal electrostatic interactions. This is exact when there
is no external magretic field. When such a field is present the longitudinal and transverse
modes are coupled and the electrostatic approximation breaks down particularly at very
long wavelengths. In diagnostic experiments on the ionosphere only short wavelengths are
used and the electrostatic approximation is adequate.

Substitution of (56) into (55) gives

n(r:,w) = - m,q (k w)/ dr - e"‘“”/d(v‘)é(‘r)a—ff e'd? (37)
Eo.m Bv
For each of the species we now introduce
noqg 2
EoMo i
and,
2
Xe = +i%/ dre T /d(ﬁ')a,(r 5fa etide? (38)

Hence, we obtain for the fluctuation induced in species o:

-

ng(F w) = —;Il—x,u?.w) - Q(Fw) (59)

We now have all the ingredients necessary to compute the density fluctuations in the plasma.
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alculatj luctuation Spectru

Let us now assume that we have a plasma of electrons and one type of singly charged ions.

For the electrons we substitute: For the ions we substitute:
w2 — Wl w? — W}
go — —€ ge — +e
My —m me = M
50 i E, (-1., ad 1-1','
foo i fo foa - F,
Xo = Xe Xoe = Xi
Mg —n ne - N

Consider first the fluctuation associated with a particular electron.

A. Intrinsic fluctuation n,,(l?,w), See Section 4.

B. Induced electron fluctuation nl(k,w) = +XQ.(F,w)
(electron dressing on electron)

C. Induced ion fluctuation N} (k,w) = —¥iQ,(k,w)
(ion-dressing on electron)

The total charge fluctuation associated with this single electron is

Qu(F,w) = —elny + 32Qe) +e(~71Q0) (60)
from which:
= . =e: n,(l-c’,w)
Qe(k,w) = Tox T x (61)

Since we are interested in the total electron-density fluctuation induced by electrons, not
the charge fluctuation, we have:

ne(k,w) = n,,(l?,w) +nl(k,w)

. - (62)
"Xe"p(kr“-’)- = np(ka“’)(l + Xi)
L+ Xxe + xi 1+xe+xi

The mean power spectrum associated with the thermal excitation by electrons is, therefore,
found by averaging over the electron velocity distnbution. If the velocity distribution is
Maxwellian (47), then the independent electron spectrum is given by (51) and the result is

= n,(lg,w) +

< n(Ew)P > 11+ xil? _ $(kw)l 11+ xil?
N+ xe + xil? 11+ xe + xil?

< Ine(k,w)]? >= (63)

where &, ( K, w) is the independent single electron mean power spectrum discussed in Section
5.
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Next consider the more important fluctuation arising from the thermal motion of an ion:
A. Intrinsic fluctuation N,(E, w), see Section 4.

B. Induced electron fluctuation n}(k,w) = 4% Qi(k,w)
(electron dressing on ion)

C. Induced ion fluctuation N}(k,w) = —%i Qi(F,w)

Solving for the charge fluctuation Q;(,w) we obtain:

L= eNy(k,w)
Q,(k,w) = m (64)

and the fluctuation induced in the electron density is given by:

T oy o XeNp(Biw) =
(k) = X0 o (F ) (65)

The total electron density fluctuation in the plasma, therefore, can be expressed in terms
of the independent particle spectra for electrons and ions and the response functions of the
plasma as follows:

<In(Fw)P > = [< Ine(Fw)f > + < o) >]nV
- - (66)
- Il + X;‘P@e(k»w) + |Xel2¢i(kvw)
14 xe + xil?

This is the form of the spectrum which has been widely used in the analysis of the incoherent
scatter data, and which has remained valid for nearly 30 years!

n,V

Fluctuations in ion density, charge density, electric field, currents, etc. can all be obtained
by an analogous procedure. An extension to a multi-ion plasma is relatively trivial. Differ-
ent temperatures for electrons and ions are allowed.

Collisions have not been considered but can, in some cases, be taken into account by
regarding the particle motion as a stochastic rather than a deterministic process, see Section
8.

7. Discussion of Results

. The spectrum function contains the y. and x; together with &, and ®,. All of these
functions are related to the autocorrelation of independent particle fluctuations as follows:

Introduce for electrons (see 48):

Pa(’;, T) = Pe(E, 1’) = e_§"?u|3|=

T,
vip = m
. eB,
Gea=Fk_o ga (ga computed with @ = Q, = — - )
p2 = EoTe (Debye length)
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And for the ions:

polk,7) = pulk, ) = e d AP

T;
Vh = 31
M = ionic mass
Ao =k_0 9a (9o computed withQ = = +%)
D2 = eoTi
'ong el

With these definitions we obtain:
Xe(Frw) =(%)2[1 +w-Im {GQ(E, w)} —iw- Re {G,(E, )}
(67)
xi(k,w) =(kL1)i)2[1 +w - Im {G,-(E,u)} —iw - Re {Gi(k,w)}]

and:

$,(Fw)=2Re {G,(E,u)}
&,(F,w)=2-Re {G.-(E,w)}
Here, from Section 4:

Re {G,(fc‘,w)} =/ e~ 30 cos T dr

]

Im{Ge(an)} = —/ e~ dbld ginwrdr

0

with similar definitions for the ions.

When there is no magnetic field or when EHB., one obtains:

wRe {G(E,u)} = \/gze-%z’ (68)

. 1-22+324-%2°...Z <<1
l+wIm{G(k,w)} = (69)
- —F - Z>>1

where we have put
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{ wIm(G({w))

wRe(G(w))

Figure 8, Plasma dispersion functions.

The only difference in the electronic and the ionic functions comes from the difference in
thermal velocities.

For values of w such that w < kVi x; and x. are of the same order of magnitude.
However, $./®; ~ ReG./Re Gi ~ Ve Jven ~ \/m/M

It follows that as long as kD, and kD; << 1 the dominant excitation of density waves

at low frequencies must stem from the ion excitation, see the numerator of (66). In the
denominator x. = (gh;)? whenever w < kVi.

It follows that the low frequency part of the spectrum simplifies to:

Re {G\(w, E)}
1+ B[l - iwGi(w, F)]|?

< |n(k,w)? >~ 2n,V

(70)

For T, = T; the factor multiplying Re {Gi(w, I;)} starts at { at w = 0. As T, /T; increases
above unity the depression near w = 0 increases and a near line spectrum develops, see
Figure 9.

When kD, and kD, become much larger than unity, then the electronic part of the spectrum
will dominate and we obtain a Gaussian spectrum with a width corresponding to the thermal
motion of electrons.

A resonance occurs near the electron plasma frequency w,. This can be established by
looking for a zero in the denominator of (66) near the plasma frequency. Since x; has
vanished near w, we have:

2
1+(kLD,) {1 +wIm(G.) - iwRe(G.)} =0 (7))
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Figure 9. The ionic part of the fluctuation spectrum for various values of T, /T;.

" As w is close to w, the expansion of the plasma dispersion functions for large arguments
~ can be used and we obtain

1+(L)’ {_(kv.,.)= _ s(kvu.)‘} o )

kD, w? wh
Where we have neglected the imaginary part. The solution is the familiar expression:

w? = w?[1 + 3(kD. )] (73)

the spectral peak associated with this oscillation is apparent in Figure 10. The peak can
be strongly enhanced by the presence of photoelectrons or other suprathermal charged
particles. The actual enhancement level involves the short-range Coulomb collisions as well
as the angular distribution of the suprathermal electrons.

Let us now briefly turn to the effect of the magnetic field. As far as the ions are concerned
the gyrofrequency (2; satifies the relation:

kVM >>Q,
This means that the correlation function
e—(kR)’( %‘)lcoa’v
becomes modulated with a periodicity T; = 27/Q;.

In practice, however, these modulations are blurred out because of the diffusion of the ions
away from their deterministic orbits. Very close to perpendicularity with the magnetic
field (i.e. v = 90°) the spectrum may become very narrow if the radius of gyration of the
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Figure 10. The fluctuation spectrum for T, /T; = 1 for
varying Debye length D., X, = j; vt

electrons is so small that the electrons are prevented from participating in the fluctuations
of the ions.
With a magnetic field the resonance associated with the plasma frequency becomes modi-
fied. When w, >> Q,, when kR < 1 and when 7 is not too close to 90° one obtains:

w? = w21+ 3(kD.)?] + Q2 - sin’y (74)
An additional resonance, which can also be observed, arises because of the presence of the
magnetic field. As y — 90°:

wh = Qlw}, +Q1)/(wl +07) (15)

Whenw? > Q22 one obtains:

wi =09, (76)

which is sometimes referred to as the lower hybrid frequency. The strength of these lines
depend on the relative magnitudes of plasma frequency and gyrofrequency, on the presence
of suprathermal electrons (or ions) etc.

The total power residing in the electron plasma oscillation at thermal equilibrium is deter-
mined by integrating the spectrum through the electron lines with the result that

(kD.)?

Pdw = —— 77
'/ellectron line 1+ (kDe )2 (‘ E
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whereas the power in the ion line becomes:
/ ®dw = !
o (14 (kDe)?][1 + f¢ + (kD.)?]
Hence, whenever kD, is small the ion contribution dominates.
Note that (78) — 1 when (kD)? — 0 or more generally — m when T, # T:. Hence,

the “ion-scattering” is half of the free electron scattering, which is obtained from (77).
When (kD)* — o0 (77} — 1.

(78)

8. The Effects of Collisions

Let us return to the solution of the inhomogeneous Vlasov first order equation:

én(F,0,t) = —q::: / EF,t— r)afét;‘ )dr (79)

Remember that the past R,V at time t — r approach 7,7 at time ¢, and that the posi-
tion/velocity travel back in time exactly as in deterministic orbit in accordance with the
equations of motion of free particles.

Suppose that the particles suffer collisions. In this case, it is no longer possible to say for
certain where they came from, because the previous history of the particle arriving at r,v
at time ¢t is a random process. If the collisions occur with like particles the process becomes
difficult because pairs of particles have unrelated motions in this theory. However it is
often the case that the collisions occur with particles of another kind with little dynamical

mutual coupling. Important examples are:

ions in low ionosphere collide with neutral gas molecules which
are much more numerous than the ions.

electrons deviating from their deterministic orbits because they
have to move in the random field of near-stationary ions.

In cases such as the two quoted we introduce:

W, (7, 7,tfF - R, V,t—r) =-conditional probability density
of finding a particle at 7, ¥
at time ¢ given that at time ¢t — 7 it was
atr— R,V

The joint probability density of the two events (F, 7,t) and (¥ - RV,t— T)is
Wi (7, 3,817 - R, V,t — 1) fo(V)
The individual probability of 7 — R,¥,t — r given that the present coordinates are 7, 7, ¢t is:
W_(F- R, V,t - r|F,5.t)
and the joint probability density of ,7,¢ and 7 — B,V — 7 is:
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W—(F— R.v f})t - TI'-"’ !Ta t)fc(ﬁ.) =

= Wi (7, 5,t[F - B, V,t - ) fo(V) (80)
but,
W-(-R,V,-r|o,7,0)

clearly must equal ..
Wi(R,V,7|o,¥,0)

from the symmetry of the equations of motion.
Taking the spatial Fourier transform of the perturbation solution one obtains:

n(E,a,t)=_2&/ E'(kt-r)<af°(,,) eHER 5 47 (81)

where the average is taken over all the different particle orbits which lead to (7, 7,¢).
Explicitly with 3% = 2600 = —Zpm . , .

n(k,7,t) = +

7 /,,m Bkt~ ’)/ Wi(R,V,7lo,5,0)7 - e+ FRA(R)A(V) - £,(7) (82)

Hence, if we introduce:

fo(D) / / dB)A(PYW,(r)V - e+ ER = A(F,5,7) (83)

we obtain:

n(F, 7,t) = ED" (84)

Let us formulate the modified scatter theory in terms of transition probability averaging.

Introducing as before:
- k.
B(k,w) = <] Q(k,w) (85)
and taking Fourier transforms, one obtains:
z Q(’c w) —iwr . AP
(k. 7,) =i ) / dre=r E. A(E,5,7) (86)

Integrating over all arrival velocities one finally obtains:

n(F,w) = -% x(k,w) - Q(F,w) (87)

where now
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ko) =—iggs [ @ [ 4010

/ / d(RYA(®) Wa(R,5, 70,7, 0)(EP)e~"F B (88)

Similarly - studying independent particles - diffusing along as a result of collisions with
another gas - but not exposed to an external field - one obtains the expression:

mp(Eul? =2 [ ar-emr [ ) fo(o)

/ / d(R)d(7) W (R, V,7lo,7,0) e~ R (89)

So that what we previously referred to as G now takes the form:

6(k ) = [ aretr [ 4@ fuo) [[ acracdy

W (R,V,rlo,7,0) e FR (90)
By properly manipulating the expression for x(E, w) we obtain
= 1 .
x(k,w)—m(1+wlm0 —iwReG) (91)

which is of the same form as before. Consider a model for W(R&, v, 7|0, 7,0) :

Suppose the particle is moving as if in Brownian motion with an equation

—

-ﬁ = -+ A(t)  (Langevin's equation) (92)

(do not confuse with 3 in Section 2!)

Then, from Chandrasekhar’s work:

- 1 _G-A3-2HR,S+F 52
W+(R,‘7,'r|ﬁ') = 3 (FG = B2 e WFG-8T) (93)

Ro=R-3(1-¢*)
S=V-5.efr

F=Ix([2pr ~3+4+4-e7Pr 77
G =&~
H=TL(1-e*)

The correspondence for 3 — 0

W (R, V,7|0) = §(R-7-r)8(V - %) (94)
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This is a formulation which preserves particles, momentum and energy (with the back-
ground). We shall now use it for a study of plasma line enhancement due to photoelectrons,
or other energetic “tail” electrons, neglecting the magnetic field.

By substitution one obtains:

a0 al,? Ay :
G(E,w) - / e'%';f‘[ﬁr—l+e 7] cemWTdr (95)
If we assume f to be small we obtain:
. * —ar?—iwr aB [% 3 _-—arl-iwr
Gk,w) =~ e dr +T e dr (96)
o [
Go(k,w)
with o = 2
Hence: friction term collision frequency
- - 2 -
G(F,w) = Go(k,w) — i 933 afW Go(k,w) (97)

The asymptotic expansion for Im G for large - = Z is

—% {(1+27%+327%.}

__ [l (kvd) 1.,
--{;*“EJ‘;"‘“"'}‘“{w”ws"'} (98)

Hence, we obtain approximately:

- h C!ﬂ 1
G(k,w) = Gk, w) + T -2-3: J
. 2,2
= Go(Fw)+ 8 —th .. (99)
w
- kD)?
= Gu(kw) + 8- S0

Turning to the fluctuation spectrum for electron plasma oscillations one obtains

. 3,
< In(k,w)* >= Tl (100)

Denominator:

2
1+ x. =1+(k_15) l4+wImG—-wImG —iwReG]

zl—ﬁé—:}(kv”‘)z w?

t
= w‘ . -(kD)zw'RcG
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w? 2
~1- ;% - 3(kD)? % (101)
Expand to first order in w about w = w,
14 xe ™ +-2(w=wr) = ———wRe G
Xe = Wy r (kD)2
2 i rd, 6 _
= oW oy \E;(e 24 (102)
The power spectral shape in this approximation becomes:
< |n(F,w)|? >~ 2n, Re G (103)

T R 1 E
This is a Lorentzian which can be integrated. I this is done one obtains for the intensity:

1 fm(”¢)+fp(v¢)+ﬁ
I~ )
HEDY Fm(ve) - T2k Fylve) + B (109

When electron-ion collisions dominate, § can be expressed approximation by as w, I"TA
(A ~ number of electrons in Debye sphere.)

‘U¢~!k‘

fm ~nm(3yp) /2, e~™%/2T  background plasma
fp ~ same for hot plasma.

Collisions between ions and the neutrals cause the mobility of the ions to decrease. The
collisions, therefore, effectively damps the ion-acoustic waves, which causes the frequency
spectrum to narrow. Studies of the narrowing of the frequency spectrum with decreasing
height can be used for studies of the neutral density at D and the E-region heights.

9. Summary and some final remarks

A summary of the application of the ion line of the incoherent scatter radar technique to
ionospheric measurements can best be given in terms of the sketches shown in Figure 11.

The plasma line, in addition to providing information on suprathermal flux, see equation
{104), also provides the possibility to determine the electron temerature and the electron
density. Ignoring the geomagnetic field for simplicity we have, for the effective k-vectors £
and ka(= kin — kr.c) the following plasma line frequency offsets apply, see equation (73):

fir = f[(1+3(k: DY]

fir = £o{1 +3(k: D)]
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Figure 11. Sketches showing various observations leading to several plasma parameters.

If the two different k-vectors are generated by shifting the radar center frequency, the
plasma line spectra at the two radar frequencies fo, and fo; will appear as shown in Figure
12. Different k-values can also be obtained by changing the geometry in a bistatic setup.
In the case shown in Figure 12 we have:
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(far — fir) (far + far) = 3D? - fl (k2 — ky)(k2 + K1) (107)
=2 f.

fe  4n(for — for)4m(foz + for) _

éf = far— firn =3D*-

2 e?
(108)
=241r2-3?—“.fR£921_—_ﬁ’2_1=_§_Ie_f022-f§1
wh e? frm o2
fo1< fo2

Figure 12. Plasma line spectra at radar frequencies f5; and foz.

All of the quantities involved are well determined except for T, which can be found this
way.

Numerical example (EISCAT parameters)

T, ~ 2000°K
foz = 933MH
for =224MH:  6f ~335kH:
fe=5MH:

Hence, from a two-frequency plasma line experiment one can deduce the electron temper-
ature accurately and independently.

In Section 2 of these lecture notes we started out considering the scattering from random
irregularities in the dielectric function. Throughout the dielectric considered in this pa-
per was a nearly lossless plasma. However, a neutral gas also exhibits random density
fluctuations, and the curious readar might wonder whether they are detectable at radio
wavelengths. In order to answer this question, consider a gas dense enough to support
sound waves. The density fluctuation may, therefore, be considered as a superposition of
thermally excited sound-works of varying wavelength and direction. As in Section 4 we ex-
pand the parameters (velocity, density, temperature) associated with the acoustic wave-field
‘1 a spatial Fourier series:
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where n can be density, pressure, velocity etc. The wave-fleld amplitudes n(E, t) all must
satisfy the wave-equation

7k, t) + k*c3 n(k,t) = 0 (109)
where T
= YAl (110)

where T is the mean gas temperature in energy units, M the molecular mass and v (1.4 for
air) the ratio of specific heat at constant pressure and constant volume. From equipartition
arguments (assuming minute losses to insure equipartition) as used in deriving specific heat
of solids we find that

< |n(k)? >= ﬁ% [6(w — kea) + 8w + keo)] (111)

From Toru Sato’s lecture, his equation 2, we see that for dry, nonionized air:

(1.55-10=° u(k)(mb) _

Ae(k) =& TCK)
_ 1.55- 10~ v(k)}(N/m?) _ (112)
=¢p- T(°K) =

=£p-1.55-107"§ - x - n(k)

where
x = Boltzmann's constant = 1.38-10"2* J/°K

combining 111 and 112, one obtains:
< |Ae(k)? >=€dvy- &% -ng-V-2.4-10"1 (113)

The radar cross section per unit volume of the gas is formed by combining equations (6)
and (18) to give:

k4 _
o= 4—; 3.73.107%% ng (m?/m?)

As a specific numerical example, take the Arecibo S-band wavelength and the atmospheric
number density at sea level:

A0 =0.125m

no = 2.688-10%®m™?
This gives for the troposphere:

d'"o, ~ 5 * 10—26 77"2/"nJ
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As a comparison the cross section per unit volume in the F-region is typically:

or =107 m¥/m?

If the Arecibo beam could be focused at lower altitude, if full advantage could be taken of
the reduced distance and the reduced bandwidth of scattering one might be able to make
up for the nearly seven orders of magnitude discrepancy in specific radar cross section. It

is probably a much more practical approach to excite low frequency sound waves as done
with the Shigaraki MV radar system, and scatter from them.



